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SUMMARY

For two-phase �ow models, upwind schemes are most often di�cult do derive, and expensive to use.
Centred schemes, on the other hand, are simple, but more dissipative. The recently proposed multi-
stage (MUSTA) method is aimed at coming close to the accuracy of upwind schemes while retaining the
simplicity of centred schemes. So far, the MUSTA approach has been shown to work well for the Euler
equations of inviscid, compressible single-phase �ow. In this work, we explore the MUSTA scheme for
a more complex system of equations: the drift-�ux model, which describes one-dimensional two-phase
�ow where the motions of the phases are strongly coupled. As the number of stages is increased, the
results of the MUSTA scheme approach those of the Roe method. The good results of the MUSTA scheme
are dependent on the use of a large-enough local grid. Hence, the main bene�t of the MUSTA scheme
is its simplicity, rather than CPU-time savings. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multiphase �ows are important in a large range of industrial applications, such as in the oil
and gas industry, in the chemical and process industry, including in heat-pumping systems,
as well as in the safety analysis of nuclear power plants.
Depending on the problem at hand, the desired level of detail, and the computational

resources available, a range of techniques are employed for the numerical simulation of these
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�ows. Here we consider a drift-�ux model, which is a two-phase model arising from averaging
the equations for single-phase �ow (see Reference [1]). It consists of a continuity equation for
each phase, and a momentum equation for the mixture, and it is employed to describe bubbly
�ows and other two-phase �ows where the motions of the phases are strongly coupled.
For such mixed �ow regimes, the drift-�ux model presents several advantages. In addition

to providing a physically realistic description of various two-phase propagation phenomena
[2–4], it represents a mathematical simpli�cation compared to more general two-�uid models
[5]. For these reasons, the model has been used in several industrial computer codes, such as
the TACITE code [6] developed for the petroleum industry.
Since the momentum equation is for the two-phase mixture, a supplementary hydrodynamic

closure law, commonly denoted as the slip relation, is required to determine the velocity of
each phase. In addition, thermodynamic closure laws are needed for each phase to relate
the phasic density to the mixture pressure. The drift-�ux model can be written on conser-
vation form, and it has shown to be hyperbolic for a reasonable range of input parameters
[7]. However, even for simple closure relations, the Jacobian of the model becomes rather
complicated.

1.1. Riemann solvers

A popular class of methods for solving systems of hyperbolic equations for �ow problems
are the Godunov-type methods (see, e.g. References [8, 9] for a review). The basic scheme
involves the solution of the Riemann problem at each cell interface. This solution is used to
compute the intercell �ux. Since they employ wave-propagation information in the construction
of the numerical �ux, these schemes are often called upwind or upstream schemes. The
Riemann problem can be exactly solved for models such as the Euler equations of inviscid,
compressible single-phase �ow. However, an exact Riemann solution for the drift-�ux model
may be derived only for some special cases, since the model is sensitive to the formulation
of the closure laws.
It is often adequate to employ an approximate Riemann solver. An attractive candidate

is that of Roe [10], in which the original model is linearized at each cell interface, and a
representation of all the wave phenomena in the model is provided. To that end, the Jacobian
of the model is diagonalized.
As has been pointed out by several researchers [7, 11–15], the complexity resulting from

the closure laws employed in the drift-�ux model severely restricts the possibilities for con-
structing a Roe solver by purely algebraic manipulations. Nevertheless, Roe-type schemes
have been proposed for this model. Romate [7] presented a method for constructing a Roe
matrix using a fully numerical approach, whereas Fl�atten and Munkejord [16] derived an
analytical Roe matrix for fairly general closure laws. Still, their approach relied on a numeri-
cal diagonalization of the Roe matrix, and on the closure laws not including di�erential terms.
Such terms were discussed, e.g. by Bour�e [3].

1.2. Centred schemes

A simpler method for calculating the intercell �ux is to employ centred stencils, which do
not explicitly make use of wave-propagation information in the construction of the numerical
�ux. However, the centred schemes are generally more dissipative than the upwind ones
(see, e.g. Reference [9]).
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The FORCE �ux has been proposed by Toro as an interesting basic centred �ux, and it is
known that the FORCE scheme possesses various good properties [9, 17, 18]. It has been shown
to be monotone, to possess the optimal stability condition, and to have the smallest numer-
ical viscosity among centred schemes when it is considered for a scalar, linear conservation
law. Moreover, entropy consistence has also been shown for a general non-linear system of
conservation laws, and convergence results have been obtained for special systems like the
isentropic Euler equations and the shallow-water equations [17].
However, a main drawback of FORCE is clearly observed when considering its truncation

error for a linear advection equation with constant speed a; @u=@t + a @u=@x=0. In this case,
the truncation error is inversely proportional to the Courant–Friedrichs–Lewy (CFL) number
C= a�t=�x [19]. In particular, the FORCE scheme cannot resolve a stationary discontinuity
exactly.

1.3. The multi-stage approach

The multi-stage (MUSTA) method proposed by Titarev and Toro [19], Toro [20] is aimed
at coming close to the accuracy of upwind schemes while retaining the simplicity of centred
schemes. In this approach, the solution of the Riemann problem at the cell interface is approx-
imated numerically by employing a �rst-order centred scheme on a local grid. More precisely,
by using 2N spatial grid cells, M local time steps, and a local CFL number, C loc = a�tloc=�x,
Titarev and Toro [19] showed that the truncation error for the linear advection equation with
constant wave speed could be strongly reduced. In particular, this MUSTA scheme was demon-
strated to behave similarly to the upwind Godunov scheme for the linear advection equation.
Motivated by this, the authors applied their scheme to the Euler equations and observed that
the new MUSTA scheme could e�ectively match the accuracy of the Godunov method with
state-of-the-art Riemann solvers.
An important motivation for the development of the MUSTA scheme was the possibility to

use it for more complex systems, such as those occurring in multiphase �uid dynamics. The
main purpose of this work is to take one step in this direction.
The analysis behind the construction of the MUSTA scheme proposed by Titarev and Toro

[19] is based on the linear advection equation and monotonicity considerations related to
this simple equation. Therefore, it may not be obvious that the good properties of the MUSTA

scheme for the scalar case in fact carry over to the case of more complicated systems of
conservation laws. Titarev and Toro demonstrated that the MUSTA scheme works well for the
Euler equations. However, in order to resolve the local Riemann problem, appropriate choices
are needed for the parameters M and N for the local grid. These depend on the speci�c
model under consideration. Consequently, there is a need for exploring the MUSTA approach
also for other models than the Euler equations. The aim of this work is thus to explore the
MUSTA approach for a two-phase model, the drift-�ux model, and reveal more insight into the
potential of this approach when it is applied to a relatively complicated system.

1.4. The drift-�ux model

A main feature of the drift-�ux model is that it possesses two fast waves (sound waves)
and one slowly moving wave (mass wave). In particular, if we have a transition from two-
phase to pure liquid �ow, the speed of sound can change from the order of 10 m=s to the
order of 1000 m=s. Consequently, for such �ow scenarios (which are highly relevant for
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the petroleum industry), one is forced to take very small time steps according to the CFL

condition. A main purpose of this work is to demonstrate to what extent the improved MUSTA

scheme of Titarev and Toro [19] is able to give an accurate resolution of the important
slowly moving mass waves. Due to the possible large gap between the smallest and largest
eigenvalues, the drift-�ux model may represent a harder test for the MUSTA scheme than the
Euler equations. Speci�cally, we also want to explore in what way the resolution properties
of the MUSTA scheme depend on choices related to the local grid represented by the parameters
M and N .
The rest of this paper is organized as follows. In Section 2, the drift-�ux model is described.

The numerical algorithm, including a second-order extension, is detailed in Section 3. Section 4
presents numerical simulations aimed at demonstrating the accuracy and robustness properties
of the MUSTA scheme, as well as to highlight the importance of the involved parameters.
Further, the section shows the di�erences between the MUSTA scheme and the Roe scheme.
The main results are summarized in Section 5, and conclusions drawn in Section 6.

2. THE DRIFT-FLUX MODEL

This section describes the employed drift-�ux model along with its closure laws, as well as
wave-speed estimates.

2.1. Model formulation

The model under consideration may be written in the following vector form:

@q
@t
+

@f(q)
@x

= s(q) (1)

where q is the vector of conserved variables, f is the vector of �uxes, and s(q) is the vector
of sources. They are given by

q=

⎡
⎢⎢⎣

�g�g

�‘�‘

�g�gug + �‘�‘u‘

⎤
⎥⎥⎦ (2)

f(q)=

⎡
⎢⎢⎣

�g�gug

�‘�‘u‘

�g�gu2g + �‘�‘u2‘ + p

⎤
⎥⎥⎦ (3)

and

s(q)=

⎡
⎢⎢⎣
0

0

−Fw

⎤
⎥⎥⎦ (4)

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:679–705



THE MUSTA SCHEME APPLIED TO A DRIFT-FLUX MODEL 683

2.1.1. Nomenclature. In the following, we use the index k ∈ {g; ‘} to denote either the gas (g)
or liquid (‘) phase. For each phase, the variables are de�ned as follows: �k is the density;
uk is the velocity; �k is the volume fraction; p is the pressure common to both phases and
Fw is the wall-friction momentum source.
The volume fractions satisfy

�g + �‘ = 1 (5)

Mass transfer between the phases is not considered. Further, dynamic energy transfers are
neglected; we consider isentropic or isothermal �ows. In particular, this means that the pressure
may be obtained as

p=p(�g)=p(�‘) (6)

2.1.2. Thermodynamic submodels. For the numerical simulations presented in this work, we
assume that both the gas and liquid phases are compressible, described by the simpli�ed
thermodynamic relations

�‘=�‘;0 +
p − p‘;0

c2‘
(7)

and

�g =�g;0 +
p − pg;0

c2g
(8)

where

pk;0 =p(�k;0)

and the reference density �k;0 and speed of sound ck are constants for each phase k.

2.1.3. Hydrodynamic submodels. By far, the most important aspect of the model is the
hydrodynamic closure law, which is commonly expressed in the following general form:

ug − u‘=	(�g; p; ug) (9)

A special case of interest is the Zuber and Findlay [21] relation

ug =K(�gug + �‘u‘) + S (10)

where K and S are �ow-dependent parameters. The validity of (10) has been experimentally
established for a broad range of parameters for both bubbly and slug �ows [2, 4, 22].
In the following calculations, the wall-friction term, Fw, is set equal to 0 unless otherwise

stated.

2.1.4. Wave-speed estimates. To obtain the local and global time-step lengths, it is necessary
to employ the CFL criterion. The CFL number is

C=
‖�‖∞�t
�x

(11)
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where ‖�‖∞ is the maximum eigenvalue of the Jacobian matrix of the model (1) in the
computational domain. This shows that even though no information of the eigenstructure of
the model is directly used in the calculation of the MUSTA �ux, an estimate of the maximum
eigenvalue is still needed. The approximate eigenvalues used here are given in Appendix A.
It should be noted that the computed results are not very sensitive to the eigenvalue estimate.
For instance, we have carried out some experiments using the simple estimate by Evje and
Fjelde [14] based on a no-slip assumption, and only minor di�erences were observed in the
numerical results.

3. NUMERICAL ALGORITHM

The drift-�ux model written in the form (1) can be integrated over a control volume to yield
the semi-discrete formulation

d
dt
Qi(t)=− 1

�x
(Fi+1=2 − Fi−1=2) + Si (12)

A simple way of integrating (12) in time is to use the forward Euler method:

Q j+1
i −Q j

i =−�t
�x
(Fi+1=2 − Fi−1=2) + �tSi (13)

Herein, Q j
i denotes the numerical approximation to the cell average of the vector of unknowns,

q(x(i); tj), that is, in control volume i at time step j. Quantities without a time index are
evaluated at time step j.
A method for specifying the cell �uxes Fi−1=2 is needed. In the Godunov method, the

solution of the local Riemann problem at the cell interfaces is employed. For two-phase �ow
models, an exact solution to the Riemann problem is not easy to �nd. Even the derivation
of approximate Riemann solvers, such as those of the type of Roe [10], involves a good
deal of work.

3.1. FORCE �ux

A simple method for calculating the numerical �ux Fi−1=2 is to use the �rst-order centred
(FORCE) scheme of Toro [9, Section 14.5.1]. We restate it here for completeness. The FORCE

�ux is given by

Fi−1=2 = 1
2(F

LF
i−1=2 + F

Ri
i−1=2) (14)

where FLFi−1=2 is the Lax–Friedrichs �ux

FLFi−1=2 =
1
2(f(Qi−1) + f(Qi))− 1

2
�x
�t
(Qi −Qi−1) (15)

and FRii−1=2 is the Richtmyer �ux. It is computed by �rst de�ning an intermediate state

QRi
i−1=2 =

1
2(Qi−1 +Qi)− 1

2
�t
�x
(f(Qi)− f(Qi−1)) (16)
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and then setting

FRii−1=2 = f(Q
Ri
i−1=2) (17)

The FORCE scheme is rather dissipative, as will be seen in the following.

3.2. The MUSTA approach

In the MUSTA approach [19, 20], the solution of the Riemann problem at the cell interface is
approximated numerically by employing a simple �rst-order centred method on a local grid.
This solution can then be used in (13) or (12).
Here we employ the improved MUSTA scheme of Titarev and Toro [19] using multiple cells

on the local grid.
Note that the FORCE �ux (14) can be written as

Fi−1=2 =F(Qi−1;Qi)=F(QL;QR) (18)

That is, it is only a function of the value to the left and to the right of the cell interface, and
it gives rise to a three-point scheme.
In the MUSTA approach, the numerical �uxes Fi−1=2 in (13) or (12) are found by transforming

the Riemann problem at xi−1=2 to a local grid:

@Q
@t
+

@F
@�
= 0; Q(�; 0)=

{
Qi−1 =QL if �¡0

Qi=QR if �¿0
(19)

Herein, the position �=0 corresponds to xi−1=2. This local Riemann problem is then solved
approximately by employing the FORCE scheme. We index the local grid by n, and, following
Titarev and Toro [19], we set �� ≡ �x. Hence, the FORCE �ux F(Qn−1;Qn) is calculated
using the formulae

F(Qn−1;Qn) =
1
4

(
Fn−1 + 2F∗ + Fn − �x

�tloc
(Qn −Qn−1)

)

Fn−1 = f(Qn−1); Fn= f(Qn) (20)

F∗ = f(Q∗); Q∗=
1
2
(Qn−1 +Qn)− 1

2
�tloc
�x

(f(Qn)− f(Qn−1))

First, the �uxes are computed from (20), where �tloc is the time-step length calculated
using the CFL criterion on the local grid:

�tloc =
C loc�x

max16n62N (max16p6d |�p
n |) (21)

where d is the dimension of the system (1), and the local CFL number, C loc, is a parameter
in the method. Next, the local solution is advanced by use of the formula

Qm+1
n −Qm

n =−�tloc
�x

(Fn+1=2 − Fn−1=2) (22)
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......

xi−1/2Qi−1 Qi

0 1 N N + 1 2N 2N + 1

Figure 1. Initial values and cell numbering for the local MUSTA grid.

The local time-stepping is performed a �xed number of times, M , and the local grid has
2N cells, in addition to two boundary cells. The initial conditions and the numbering of the
local grid are illustrated in Figure 1. The algorithm for the MUSTA �ux can be summarized as
follows:

1 For each local cell n=1; : : : ; 2N , compute the �uxes on the data from stage m
using (20).

2 If m=M then return the FORCE �ux FM
N+1=2, else continue.

3 Apply extrapolation boundary conditions; Qm
0 =Q

m
1 and Q

m
2N+1 =Q

m
2N .

4 Update the local solution using (22) for n=1; : : : ; 2N . Repeat from 1.

Thus, the MUSTA �ux Fi−1=2 to be employed in (12) or (13) is the FORCE �ux FM
N+1=2 found on

the local grid.
In the above notation, the original FORCE scheme is nearly recovered for M =1 and 2N =2.

One notable di�erence, however, is that in the MUSTA approach, the �uxes in (20) are calculated
using a local CFL criterion, while in the FORCE scheme, the global time-step length is used
throughout. Here we follow Titarev and Toro [19] and set the local CFL number to C loc = 0:9
for all the calculations.
Note that the cell size of the local grid is without signi�cance, since we are only interested

in the solution FM
N+1=2 after a particular number of steps, and not at a particular ‘time’.

The MUSTA scheme is constructed to have some of the advantages of upstream schemes.
Indeed, for increasing M and N , the MUSTA �ux is expected to approach the Godunov �ux
using the exact Riemann solver [19].
In the following, we will denote the M -stage MUSTA scheme with 2N local cells by

MUSTAM−2N .

3.3. Higher-order extension

Titarev and Toro [23] suggested to employ weighted essentially non-oscillatory (WENO)
schemes in conjunction with MUSTA to produce higher spatial order. Here we propose a di�erent
and simpler approach, namely to use a semi-discrete version of the monotone upwind-centred
scheme for conservation laws (MUSCL) [24, 25].
In the MUSCL approach, we construct a piecewise linear function using the data {Qi(t)}. Then

at the interface xi−1=2 we have values on the left and right from the two linear approximations
in each of the neighbouring cells. These are denoted by

QR
i−1 =Qi−1 +

�x
2

�i−1 and QL
i =Qi − �x

2
�i (23)
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where �i is a slope calculated using a suitable slope-limiter function. Some are listed by
LeVeque [8, Section 9.2]. The minmod slope is

�i=minmod
(
Qi − Qi−1
�x

;
Qi+1 − Qi

�x

)
(24)

where the minmod function is de�ned by

minmod(a; b)=

⎧⎪⎪⎨
⎪⎪⎩
0 if ab60

a if |a|¡|b| and ab¿0

b if |a|¿|b| and ab¿0

(25)

The monotonized central-di�erence (MC) slope [26] is

�i=minmod
((

Qi+1 − Qi−1
2�x

)
; 2
(
Qi − Qi−1
�x

)
; 2
(
Qi+1 − Qi

�x

))
(26)

We also have the van Leer [27] (see Reference [26]) limiter

�i=

⎧⎪⎨
⎪⎩
2(Qi − Qi−1)(Qi+1 − Qi)
(Qi − Qi−1) + (Qi+1 − Qi)

if sgn(Qi − Qi−1)= sgn(Qi+1 − Qi)

0 otherwise
(27)

The slope limiting is applied componentwise to the vector of unknowns. There are di�erent
possible choices regarding which variables to use in the slope-limiting procedure, for instance;
the composite variables, the primitive variables, or the characteristic variables. The latter
would correspond more closely to the scalar case, but would require the diagonalization of
the Jacobian matrix, thus defying the purpose of the MUSTA scheme, which is to be simple.
Here we use the primitive variables �g; p; ug.
When the piecewise linear reconstruction has been performed, the MUSTA �ux

Fi−1=2 =F(QR
i−1;Q

L
i ) is computed as described in the previous subsection. To obtain a second-

order solution in time, we employ the semi-discrete formulation (12) in combination with the
two-stage second-order strong-stability-preserving (SSP) Runge–Kutta (RK) method (see, e.g.
Reference [28]).
With the semi-discrete formulation (12) of the form

dQ
dt
=L(Q) (28)

the two-stage second-order SSP-RK method can be written as

Q(1) =Q j + 1
2�tL(Q j)

Q j+1 = 1
2 Q

j + 1
2Q

(1) + 1
2 �tL(Q(1))

(29)

Herein, Q j is the vector of unknowns from time step j, Q j+1 is the sought values at the next
time step, while Q(1) represents intermediate values.
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3.4. Comparison with other methods

3.4.1. Reference method. It will be instructive to compare the results produced by the MUSTA

scheme to those obtained by using a completely independent numerical method. For that
purpose we will employ the wave-propagation (�ux-di�erence splitting) form of Godunov’s
method presented by LeVeque [8, Chapter 15]. It is a ‘high-resolution’ method, that is,
approaching second order for smooth solutions. The solutions of the Riemann problems at
the cell interfaces were found by applying the approximate Riemann solver of Roe [10]
to the drift-�ux model (1)–(4). The analytical Roe matrix was derived by Fl�atten and
Munkejord [16].

3.4.2. AUSM schemes. For the current two-phase �ow model, an alternative to the Roe scheme
denoted as AUSM [29] has been investigated by Evje and Fjelde [13, 14]. Schemes of the AUSM

class generally achieve an accuracy comparable to that of the Roe scheme at much lower
computational cost. However, they are sometimes prone to introducing numerical oscillations
[30], and do not seem to generalize very well to arbitrary systems of conservation laws.
It should nevertheless be noted that for many applications of the drift-�ux model, AUSM

schemes seem a viable alternative to the MUSTA and Roe schemes considered in this paper,
in particular if computational e�ciency is of primary importance. We refer to References
[13, 14] for details.

4. NUMERICAL SIMULATIONS

In this section, we will analyse the performance of the MUSTA scheme and its MUSCLE extension
by conducting basic numerical tests and by running benchmark cases from the literature.
Comparisons with the Roe scheme and the FORCE scheme will also be provided. The main
aim of the section is to

• Clarify the dependence of the MUSTA scheme on the parameters M and N ,
• Explore the performance of the MUSTA scheme for cases where there is a large di�erence
between the largest and the smallest eigenvalue. In particular, we want to demonstrate
the importance of the fact that the MUSTA scheme is semi-discrete, which is an essential
di�erence compared to the FORCE scheme.

All the computations in this work have been performed using a local CFL number of
C loc = 0:9 in (21).

4.1. Shock tube

This subsection presents calculations of the shock-tube test case of Baudin et al. [11]. Baudin
et al. took the liquid to have a constant density. Here, however, both phases are treated
as compressible. The considered horizontal tube is 100 m long, and there is a jump in the
initial state at x=50 m. The initial states can be found in Table I, and the equation-of-state
parameters are given in Table II. Herein,

�◦
k ≡ c−2

k (p − pk;0) (30)

The slip is given by the Zuber–Findlay relation (10) with K =1:07 and S=0:2162.
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Table I. Initial states in the shock-tube problem.

Quantity Symbol (unit) Left Right

Gas volume fraction �g (–) 0.6 0.55
Pressure p (kPa) 522.825 803.959
Gas velocity ug (m=s) 29.5138 2.5582
Liquid velocity u‘ (m=s) 24.7741 1.7372

Table II. Parameters employed in the shock-tube problem.

ck (m=s) �◦
k (kg=m

3)

Gas (g) 300 0
Liquid (‘) 1000 999.916

� g
 (

–)

0 20 40 60 80 100

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

FORCE
MUSTA 1-2
MUSTA 2-2
MUSTA 4-2
MUSTA 6-2
Roe, 3200 cells

x (m)

Figure 2. Gas volume fraction for the shock-tube test case. Dependency on the number of
stages, M , for the MUSTAM−2 scheme.

First, we will investigate the dependence upon the parameters M and N , that is, the number
of stages and the number of local cells. Thereafter, the convergence of the basic MUSTA scheme
and the MUSCL-MUSTA scheme will be tested.

4.1.1. E�ect of number of stages and local cells. Figure 2 shows the volume fraction cal-
culated on a 50-cell grid using a CFL number of C=0:9 in (11). The results are plotted
at t=0:5 s. The reference solution was obtained on a 3200-cell grid with the Roe method
employing the MC limiter. The data in the �gure have been calculated using two local cells,
or N =1, and the number of local time steps, M , has been varied. The di�erence between
MUSTA1−2 and FORCE is that in FORCE, only the global time-step length is employed, while
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MUSTA1−2 uses a local CFL criterion for the calculation of the intercell �uxes. This is also the
di�erence between the MUSTAM−2 scheme discussed here and the two-cell MUSTA scheme pro-
posed by Toro [20]. For the present case, there is only a small di�erence between the results
produced with MUSTA1−2 and those from FORCE.
When M is increased from 1 to 2, the performance of the scheme is clearly improved.

However, as M is further increased, the monotonicity is lost and grave oscillations occur. This
is in contrast to what was reported by Toro [20] for the Euler equations. There, satisfactory
results were shown for the four-stage two-cell MUSTA scheme.
Figure 3 shows why MUSTA cannot be expected to give good results in general when the

number of stages, M , is greater than the number of cells, N , on each side of the discontinuity.
The �gure displays the gas velocity as calculated in the local MUSTA procedure for a varying
number of local cells, 2N . The right and left states are the same as in the shock-tube test
case, and the results are shown after M =4 local time steps. Figure 3(a) shows the whole
domain, while Figure 3(b) highlights the results for the middle cells. It is the values from
these cells that are used to compute the intercell �ux. As can be seen in Figure 3(a), the
calculation domain grows as the number of local cells is increased.
Figure 3(b) shows a clear discrepancy between the values obtained with N =1 (two local

cells) and N =2 (four local cells). On the left-hand side, a small di�erence can also be seen
between the values calculated for N =2 and 3 (six local cells). The results for N =3 and 4
are identical in the two middle cells.
Due to the CFL criterion, a wave can travel one cell per time step. For N =2, that is,

with two internal cells on each side of the Riemann discontinuity, a wave may travel to the
boundary, be (partially) re�ected, and return to the origin in four time steps. On the other
hand, for N =3, the wave has no longer the time to return. This is why there is a di�erence
between the N =2 and 3 results, while the results for N =3 and 4 are equal.
As a conclusion, we may say that to be certain that boundary e�ects do not interfere in

the calculation of the MUSTA �ux, one must choose M¡2N . However, the results in Figure 3
indicate that M =2N may also give good results.
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Figure 3. Gas velocity on the local MUSTA grid for the shock tube. Results after four local MUSTA
time steps for varying number of local cells: (a) whole domain; and (b) close-up on xN+1=2.
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The bad results for M¿2N may be due to the rather simpli�ed boundary treatment in the
local MUSTA procedure, which has as a consequence that when N is set too low, information
disappears from the calculation domain in an unmotivated way. This is because every variable
at the boundaries is found from the inner domain by zeroth-order extrapolation. Hence, the
boundary conditions are not set according to the number of positive and negative character-
istics, as they ought to be. However, instead of enforcing a rigorous boundary treatment in
the local MUSTA procedure, it is adequate simply to choose a su�ciently large local grid.
The e�ect of the simultaneous increase of the number of stages, M , and the number of local

cells, 2N , is shown in Figure 4. As can be seen from the plot, it is primarily the resolution
of the contact discontinuity that is improved for an increased number of stages. However,
the di�erence between four and eight stages is small. In the graph we have also plotted data
obtained with the �rst-order Roe method on the same grid and using the same CFL number.
It is noticeable that the MUSTA results approach those of the Roe scheme when the number
of stages is increased. For eight stages, the results obtained with the MUSTA scheme are very
similar to those calculated using the Roe method.

4.1.2. Some comparisons with the FORCE scheme. Figure 5 shows volume-fraction pro�les
for computations performed on a 50-cell grid using various time-step lengths (CFL numbers).
Results for MUSTA1−2 are displayed in Figure 5(a), while Figure 5(b) gives pro�les for the
FORCE scheme. It can be seen that the FORCE scheme becomes increasingly di�usive as the
time-step length is decreased. This is due to the �x=�t term of the Lax–Friedrichs �ux,
and it re�ects the fact that the FORCE scheme has no semi-discrete form. The results of the
MUSTA1−2 scheme, on the other hand, converge for decreasing time-step lengths, and there is
only a small di�erence between the results for C=0:1 and those for C=0:01. This behaviour
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Figure 4. Gas volume fraction for the shock-tube test case. E�ect of varying number of stages and
local cells in the MUSTAM−2N scheme.
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Figure 5. Gas volume fraction for the shock-tube test case. Comparison of the MUSTA1−2
scheme and the FORCE scheme for varying CFL number (time-step length). 50 grid

cells: (a) MUSTA1−2; and (b) FORCE.

is expected from a semi-discrete scheme, even though it does not prove in itself that the
scheme is semi-discrete.
There are two main reasons for the di�erences between MUSTA and FORCE. In MUSTA, as

opposed to in FORCE, the intercell �uxes are calculated using a local CFL criterion. Furthermore,
in MUSTA, when more local time steps are taken, the neighbouring global cells do not interfere
in the calculation. In FORCE, when the global grid is re�ned, more time steps are performed
due to the CFL criterion. Therefore, more neighbouring cells are a�ected, since information
propagates one cell per time step.

4.1.3. Convergence of basic scheme. Figure 6 displays data obtained on various grids with
the MUSTA4−4 scheme, that is, the four-stage MUSTA scheme with four local cells. The CFL

number was C=0:9. As can be seen, the results are non-oscillatory, and both the shocks
and the contact discontinuity are quite sharply resolved. In fact, the results are similar to
those of the �rst-order Roe scheme, except that the contact discontinuity is slightly more
smeared.

4.1.4. Higher-order scheme. Figure 7 shows a comparison between the �rst-order MUSTA4−4
scheme and its MUSCL extension. The employed grid had 50 cells and the CFL number was
C=0:5. Results obtained with the MC-limited Roe method are also shown for compari-
son. Employing MUSCL-MUSTA4−4 with the minmod limiter gave a sharper resolution of both
the shocks and the contact discontinuity, compared to the �rst-order MUSTA4−4 scheme.
However, as can be observed, the Roe-MC scheme gave a still better resolution, partic-
ularly for the right-hand-side shock. Unfortunately, using less-di�usive limiters than the
minmod limiter gave oscillations with the MUSCL-MUSTA4−4 scheme. This is shown in the
�gure for the van Leer limiter. Henceforth, we therefore only consider the minmod
limiter.
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Figure 6. Shock tube. Convergence of the MUSTA4−4 scheme: (a) gas volume fraction; (b) pressure;
(c) gas velocity; and (d) liquid velocity.

The convergence for MUSCL-MUSTA4−4 using the minmod limiter is displayed in Figure 8 for
C=0:5. The results are non-oscillatory, and both the shocks and the discontinuity are well
resolved. Nevertheless, the MC-limited Roe scheme gave a sharper resolution [16].

4.1.5. Computational cost. A comparison of the CPU-time consumption of di�erent MUSTAM−2N
schemes and the Roe scheme is shown in Table III. The calculations were run using a CFL

number of 0.9. Data are only shown for a 800-cell grid, since no grid dependency was detected.
The second column shows the CPU time of the MUSTAM−2N schemes divided by that of the �rst-
order Roe scheme, while the third column shows the �gures for the MUSCL-MUSTAM−2N schemes
employing the minmod limiter and the Roe scheme using the MC limiter.
The table shows that as the number of local time steps, M , and local cells, 2N , are

increased, the computational cost of the MUSTA schemes strongly grows. As noted in the
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Figure 7. Gas volume fraction for the shock-tube test case. Comparison of the �rst-order and the
MUSCL-MUSTA4−4 scheme with di�erent limiter functions on a 50-cell grid.

previous subsections, the MUSTA scheme comes quite close to the accuracy of the Roe scheme
for M =4 and 2N =4. Therefore, it is most relevant to compare the CPU-time consumption of
the (MUSCL-) MUSTA4−4 scheme and that of the Roe method.
While care has been taken during the implementation of both types of schemes not to waste

too much CPU time, optimizations are undoubtedly possible. Particularly for MUSCL-MUSTA, there
are some degrees of freedom regarding the implementation. Therefore, instead of declaring a
‘CPU-time winner’, one may only conclude that

• the CPU-time consumption of the MUSTA4−4 scheme and the Roe scheme are of the same
order of magnitude, and

• the CPU-time consumption of MUSCL-MUSTAM−2N is relatively larger than that of MUSTAM−2N .

It is perhaps surprising that the centred scheme MUSTA4−4 is not computationally much
cheaper than the Roe scheme for a given grid size and time-step length. The reason is that
the numerical diagonalization and matrix manipulations performed in the Roe scheme are
roughly balanced by the extra computations carried out on the local MUSTA grid. This includes
extra evaluations of the equation of state and the slip relation.
The second-order Roe scheme is relatively cheaper than the MUSCL-MUSTA4−4 scheme, since in

the Roe scheme, the high-resolution terms are already mostly calculated during the diagonal-
ization of the Jacobian matrix. In MUSCL-MUSTA, on the other hand, the piecewise reconstruction
of the data comes fully in addition to the calculations done in the basic scheme.

4.2. Pure rarefaction

We now study the pure-rarefaction problem of Baudin et al. [11], where the initial values
are given in Table IV, and the equation-of-state parameters are reported in Table V. In the
present problem, the no-slip law is used, that is, 	≡ 0.
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Figure 8. Shock tube. Convergence of the MUSCL-MUSTA4−4 scheme using the minmod limiter:
(a) gas volume fraction; (b) pressure; (c) gas velocity; and (d) liquid velocity.

Table III. Shock-tube test case. Comparison of CPU-time consumption.

M − 2N MUSTAM−2N =Roe M-MUSTAM−2N =Roe-MC

1− 2 0.19 0.40
2− 2 0.32 0.67
4− 4 0.78 1.58
8− 8 2.28 4.65

Pressure pro�les at t=0:8 s are presented in Figure 9 for various grid sizes. The employed
CFL number was C=0:5. Figure 9(a) shows the results for the basic four-stage MUSTA scheme
with four local cells. Data for the �rst-order Roe scheme on a 50-cell grid are shown for
comparison, and it can be observed that the results are very similar. As can be seen from
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Table IV. Initial states in the pure-rarefaction test problem.

Quantity Symbol (unit) Left Right

Gas volume fraction �g (–) 0.6 0.68
Pressure p (MPa) 1.66667 1.17647
Gas velocity ug (m=s) 34.4233 50.0
Liquid velocity u‘ (m=s) 34.4233 50.0

Table V. Parameters employed in the rarefaction test problems.

ck (m=s) �◦
k (kg=m

3)

Gas (g) 100 0
Liquid (‘) 1000 998.924
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Figure 9. Pressure for the pure-rarefaction test problem. Convergence of the MUSTA4−4 scheme and
its MUSCL extension: (a) basic scheme (�rst-order); and (b) MUSCL with minmod limiter.

Figure 9(b), the MUSCL extension using the minmod limiter represents an improvement over
the standard MUSTA scheme. However, the resolution is not quite as good as that obtained
using the MC-limited Roe scheme.

4.3. Transonic rarefaction

Transonic rarefactions, that is, when an eigenvalue �p is negative to the left of the pth wave,
and positive to the right, are not automatically handled by the Roe scheme if an entropy �x
is not implemented. It is therefore interesting to compare the performance of the Roe and
MUSTA schemes in such a case.
A transonic rarefaction (and some other waves) can be produced by decreasing the pressure

and increasing the velocities on the right-hand side of the pure-rarefaction test case. The initial
states are listed in Table VI, and the equation-of-state parameters are given in Table V.
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Table VI. Initial states in the transonic-rarefaction test problem.

Quantity Symbol (unit) Left Right

Gas volume fraction �g (–) 0.6 0.68
Pressure p (MPa) 1.66667 0.7
Gas velocity ug (m=s) 34.4233 70.0
Liquid velocity u‘ (m=s) 34.4233 70.0
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Figure 10. Pressure for the transonic-rarefaction problem. Comparison of the MUSTA4−4 scheme, the
MUSCL-MUSTA4−4 scheme using the minmod limiter, the MC-Roe scheme, and the MC-Roe scheme

employing Harten’s entropy �x with �=20. 100 grid cells.

The plot in Figure 10 shows pressure pro�les obtained after t=0:3 s on a 100-cell grid,
using a CFL number of C=0:5. The MC-limited Roe scheme produced a rarefaction shock,
something which is unphysical. As shown, this can be remedied by employing the entropy
�x of Harten [31]. Here we took the parameter �=20‖. It can also be seen from the �gure
that both the MUSTA4−4 scheme and the MUSCL-MUSTA4−4 scheme using the minmod limiter gave
physically plausible solutions.

4.4. Static discontinuity

We next consider a static discontinuity. This test case clearly reveals di�erences between
upwind and central schemes. Upwind schemes are known to preserve a static discontinuity,
whereas central schemes will gradually smear it out.

‖Written in the notation of LeVeque [8, Section 15.3]. In the notation of Harten, this corresponds to �=10.
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Table VII. Initial states in the static-discontinuity test problem.

Quantity Symbol (unit) Left Right

Gas volume fraction �g (–) 0.2 0.8
Pressure p (kPa) 100 100
Gas velocity ug (m=s) 0 0
Liquid velocity u‘ (m=s) 0 0

Table VIII. Parameters employed in the static-discontinuity test problem.

ck (m=s) �◦
k (kg=m

3)

Gas (g)
√
105 0

Liquid (‘) 1000 999.9

� g
 (

–)

0 20 40 60 80 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FORCE
MUSTA 1-2
MUSTA 4-4
MUSTA 8-8
M-MUSTA 4-4
Roe (upw)

x (m)

Figure 11. Gas volume fraction for the static discontinuity. Comparison of the FORCE scheme, various
MUSTAM−2N schemes and the MUSCL-MUSTA4−4 scheme with the minmod limiter. 100 grid cells.

This test consists of a discontinuity in the volume fraction, while the other variables are
uniform. The velocities are zero. The initial states are given in Table VII, and Table VIII
shows the parameters employed in the equation of state.
Figure 11 shows gas-volume-fraction pro�les after t=10 s calculated on a 100-cell grid

using C=0:9. As expected, the performance of the MUSTA schemes improved as the number
of stages was increased. The curve labelled M-MUSTA is for the MUSCL extension using the
minmod limiter, and it shows that the MUSCL approach provided some improvement. The
�gure also shows that the FORCE scheme is the most di�usive, whereas the �rst-order Roe
scheme perfectly preserves the discontinuity.
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Figure 12. Gas volume fraction for the moving discontinuity. Comparison of the FORCE scheme,
MUSTAM−2N schemes and the MUSCL-MUSTA4−4 scheme with the minmod limiter. The �rst-order

(upwind) Roe scheme and the MC-limited Roe scheme are also shown. 100 grid cells.

It should be noted that the MUSTA scheme keeps smearing the discontinuity even when both
the local and global CFL numbers are set equal to 1.

4.5. Moving discontinuity

Now we let the discontinuity move. The initial conditions are similar to those of the static-
discontinuity case, except that both phases have a velocity of u=10 m=s. There is no slip
between the phases. Instead of a single jump in the volume fraction, there is now a ‘hat’.
Periodic boundary conditions are employed.
Figure 12 displays volume-fraction pro�les after t=10 s, that is, the volume fraction ‘hat’

has traversed the calculation domain once. As for the static-discontinuity case, the grid had
100 cells and the CFL number was C=0:9. The initial pro�le is plotted for reference. For
this case, the �rst-order Roe scheme (labelled ‘upw’) has no particular advantage compared
to the MUSTA4−4 scheme. Results for MUSTA8−8 are not shown, since they were very similar to
those of MUSTA4−4. The Roe scheme employing the MC limiter gave the best resolution, while
the MUSCL-MUSTA4−4 scheme lay in between that and the �rst-order schemes. Nevertheless, the
most interesting point is that the performance of the MUSTA4−4 scheme is rather close to that
of the Roe scheme.

4.6. Pipe-�ow problem

We �nally turn to the pipe-�ow problem, which was introduced as Example 4 by Evje and
Fjelde [14]. This is a demanding test, particularly regarding mass transport, and it includes such
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Table IX. Parameters employed in the pipe-�ow problem.

ck (m=s) �◦
k (kg=m

3)

Gas (g)
√
105 0

Liquid (‘) 1000 999.9
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Roe (MC), 3200 c.
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Figure 13. Gas volume fraction for the pipe-�ow test problem. Comparison of the FORCE scheme,
MUSTAM−2N schemes and the MUSCL-MUSTA4−4 scheme with the minmod limiter. The �rst-order

(upwind) Roe scheme and the MC-limited Roe scheme are also shown. 200 grid cells.

challenges as a more complex, non-linear slip relation and near-single-phase �ow. Moreover,
the near-single-phase �ow causes a large di�erence between the eigenvalues.
The equation-of-state parameters are given by Table IX. In the slip relation (10), K =1

is constant, but S is now a non-linear function of the volume fraction:

S= S(�g)= 1
2

√
1− �g (31)

Further, a wall-friction model is included:

Fw =
32um�m

d2
(32)

where um is the mixture velocity,

um = �gug + �‘u‘ (33)

and the dynamic mixture viscosity, �m, is taken to be

�m = �g�g + �‘�‘ (34)

with �g = 5× 10−6 Pa s and �‘=5× 10−2 Pa s.
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Figure 14. Pipe-�ow test problem. Convergence of the MUSCL-MUSTA4−4 scheme using the minmod
limiter: (a) gas volume fraction; (b) pressure; (c) gas velocity; and (d) liquid velocity.

The problem consists of a horizontal pipe of length l=1000 m and inner diameter d=0:1 m.
Initially, it is �lled with stagnant, almost-pure liquid, with �g = 1× 10−5. Furthermore, the
details of the simulation are speci�ed as follows:

• The simulation lasts for 175 s.
• Between t=0 and 10 s, the gas and liquid inlet mass-�ow rates are linearly increased
from 0 to 0:08 kg=s and 12:0 kg=s, respectively.

• From t=10 to 175 s, the inlet liquid mass-�ow rate is kept constant.
• The inlet gas mass-�ow rate is kept constant between t=10 and 50 s.
• Between t = 50 and 70 s, the inlet gas mass-�ow rate is linearly decreased from 0.08 to
1× 10−8 kg=s, after which it is kept constant.

• At the outlet, the pressure is kept constant at p=1× 105 Pa.
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A comparison of di�erent MUSTA variants, the FORCE scheme and the Roe scheme is given in
Figure 13. The computations were performed on a 200-cell grid using C = 0:5. The solution
obtained with the MC-limited Roe scheme on a �ne grid is shown for reference. First, it is
obvious that the FORCE scheme is useless for this kind of calculation due to its smearing
of volume-fraction waves. The time-steps calculated according to (11) became very small
because of the transition to single-phase �ow, and we observe a behaviour which is similar
to the one seen in Figure 5. Next, it is somewhat surprising that already MUSTA1−2 provided
a noticeable improvement, the only di�erence between the two schemes being that the latter
employs a local CFL number of 0.9 in the calculation of the intercell �uxes. For an increasing
number of stages, the MUSTA scheme gave better results, but even MUSTA8−8 did not quite attain
the volume-fraction pro�le of the �rst-order Roe scheme. Similar to what has been seen in
the previous test problems, MUSCL-MUSTA4−4 with the minmod limiter gave quite good results,
but not as sharp as those of the Roe scheme using the MC limiter.
It is interesting that the di�erence between the volume-fraction pro�le of MUSTA1−2

and that of MUSCL-MUSTA1−2 is signi�cantly larger than the di�erence between MUSTA4−4 and
MUSCL-MUSTA4−4. Furthermore, the volume-fraction pro�le of MUSCL-MUSTA1−2 is not far from
that of MUSCL-MUSTA4−4. Hence, the former scheme may be of interest for practical calculations,
since it is less CPU-intensive.
Calculations performed with the MUSCL-MUSTA4−4 scheme for various grids using C=0:5

are plotted in Figure 14. The results are non-oscillatory, and it can be observed that the
near-single-phase �ow is handled well. The results are comparable to those presented for the
second-order AUSMD scheme in Evje and Fjelde [14]. Still, the resolution is not quite as good
as the one obtained using the MC-limited Roe method.

5. DISCUSSION

The multi-stage (MUSTA) centred scheme has been analysed for the drift-�ux model. In this
scheme, an approximate solution to the Riemann problem at the cell interfaces is found
by running the �rst-order centred (FORCE) scheme a given number of time steps (M) on a
2N -cell local grid. The scheme is of special interest, since it uses no explicit information of
the eigenstructure of the model, while giving a signi�cantly improved solution compared to
the FORCE scheme. Still, the scheme is dependent on an estimate of the maximum eigenvalue
to be able to employ the CFL criterion.
To avoid interference from the boundaries in the local MUSTA procedure, it is necessary

to choose M¡2N . However, in the present computations, M =2N also gave good results.
Choosing M¿2N may yield oscillatory solutions and should be avoided.
The four-stage MUSTA scheme with four local cells (M =4 and N =2) gave results quite

close to those of the �rst-order Roe scheme. In contrast to the Roe scheme, however, MUSTA
did not preserve a static discontinuity. On the other hand, MUSTA handled a transonic rarefaction
without producing an entropy-condition violation.
To achieve higher order in time and space, we have proposed to use the MUSTA �ux in a

semi-discrete MUSCL formulation. The resulting MUSCL-MUSTA scheme employing the minmod
limiter produced improved and non-oscillatory results. A pipe-�ow problem emphasizing
volume-fraction waves and near-single-phase �ow was well resolved, albeit with a less sharp
resolution than the one obtained with the MC-limited Roe scheme. Unfortunately, MUSCL-MUSTA
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could not in general be used with less-di�usive limiters, since they produced oscillatory
solutions for the tested shock tube.
Provided the number of stages is chosen within the bounds described above, the MUSTA

scheme possesses robustness properties comparable to those of the Roe scheme. In particular,
it generally resolves shock fronts in a non-oscillatory manner and seems to be able to handle
the transition to single-phase �ow while preserving positivity of volume fractions.
Since its computational cost increases quite quickly with the number of stages and local

cells, the main advantage of the MUSTA scheme is its simplicity.

6. CONCLUSIONS

• The MUSTA scheme has been successfully applied to the drift-�ux model, which is rela-
tively complicated compared to the Euler equations. In particular, the scheme
worked well for a test problem with a large gap between the eigenvalues.

• The results of the basic MUSTA scheme approached those of the �rst-order Roe scheme.
However, the MUSCL-MUSTA scheme did not quite attain the results of the second-order
Roe scheme based on wave decomposition. This is mainly since it was necessary to
employ a more-di�usive limiter function in MUSCL-MUSTA.

• The computational cost of the MUSTA scheme is comparable to that of the Roe scheme.
• MUSTA seems to be an appropriate choice of numerical scheme if

1. It is desired to employ closure laws for which the Roe scheme is not valid, e.g.
closure laws including additional terms on di�erential form.

2. One wishes to avoid programming the numerical diagonalization performed in the
Roe scheme.

3. One wants to avoid possible problems due to transonic rarefactions.

APPENDIX A: APPROXIMATE EIGENVALUES

In this work, we employed the approximate eigenvalues derived by Evje and Fl�atten [5] using
a perturbation technique under the assumption that the slip relation 	 satis�es the di�erential
equation
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In the following, we employ the de�nitions
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With the perturbation parameter
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the eigenvalue corresponding to the material wave was found to be
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and the eigenvalues corresponding to the sonic waves were calculated as

�p= up ± cm (A9)
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and the mixture sonic velocity is
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